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I. Phys. A: Math. Gen. 26 (1993) 5481-5489. Printed in the UK 

Normalized momentum maps and reduction 

Frans Cantrijnt 
"etical Mechanics Division, University of Gent, Krijgslaan 281. B-9003 Gent, Belgium 

Received 5 April 1993 

Abstract. I t  is shown that for a Hamilkmian anion of a compact Lie gmup on a symplectic 
manifold, a reduction scheme can be constructed based on a suitably normalized momenNm 
map. Under the appropriate regularity assumptions if tums out Ihat ule reduced spaces are 
Poisson manifolds or, more precisely, canonical manifolds. As an application. Ihe reduction of 
a particular class of non-Hamiltonian systems with symmetry is considered. 

1. Introduction 

In some recent papers, Leach [I] and Gomnge and Leach [ 2 4  have studied the 
conservation laws and orbit equations for a celtain model of the Kepler pmblem with 
drag, and generalizations of i t  An important element in their analysis is the fact that the 
angular momentum of the system under consideration yields a conformal invariant. It then 
immediately follows that the unit vector in the direction of the angular momentum is a 
vector constant of the motion, which enables one to reduce the equations of motion. The 
ObseNatiOn that conformal invariance of the angular momentum for the Kepler problem with 
drag can be related to the rotational symmetry of the system, has inspired us to investigate, 
from a more general perspective, the interplay between symmetry and reduction for a class 
of non-Hamiltonian systems admitting a conformal invariant induced by the symmetry group 
(cf 151). 

The theory of symmetry and reduction constitutes one of the most beautiful and most 
important chapters in the geometrical treatment of mechanics: see, e.g., Marmo et a1 [6]. We 
now briefly describe the two main comerstones on which the whole theory is built, namely 
the Marsden-Weinstein reduction theorem for symplectic manifolds and (a geometric version 
of) Noether's theorem. For details we may refer to various textbooks, such as Abraham and 
Marsden [71, Guillemin and Stemberg [SI, Libermann and Made [9], and M m o  ef af [6]. 

Let (M,  CO) be a symplectic manifold, G a Lie group with Lie algebra 0, and G" the linear 
dual space of G. Assume G defines a symplectic action on ( M ,  o) with an Ad'quivariant 
momentum map J : M -+ 8', where Ad* is the coadjoint representation of G on p. For 
any p E 8'. let G, denote the isotropy subgroup of G at /A with respect to the coadjoint 
representation. The Marsden-Weinstein reduction theorem then states the following (see 
also [IO]): if p E G* is a weakly regular value of J and if G, acts freely and properly on 
the submanifold J- ' (p )  of M, then there exists a unique symplectic structure a,, on the orbit 
space P,, = J- ' (p) /Gp such that $up = j;w. Here, E,, : J- ' (p )  -+ 'Pp denotes the 
canonical projection and j,, : J - ' ( p )  --+ M is the natural inclusion. Following Libermann 
and Marle [91, a symplectic action will be called Hamiltonian if it admits a momentum 
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map, and strongly Hamiltonian if the momentum map is Ad*-equivariant. In passing, we 
recall that for any symplectic action with momentum map J, there always exists an affine 
action of G on 9' with respect to which J is equivariant [ I l l .  The reduction theorem 
can therefore be formulated for every Hamiltonian action, whether or not the associated 
momentum map is Ad'-equivariant [91. 

Within the above geometrical setting Noether's theorem can be formulated as follows: 
if a Hamiltonian action of G on (M,w) ,  with momentum map J ,  leaves invariant a 
Hamiltonian system, then J is a conserved quantity (i.e. a G*-valued first integral) of that 
system. Using both theorems it is then not difficult to prove that a Hamiltonian system 
with symmetry induces a reduced Hamiltonian system on the symplectic quotient spaces 
P,,, parametrized by the weakly regular values of the momentum map. 

The Marsden-Weinstein theorem has been extended and generalized in several ways by 
relaxing some of the technical assumptions. In that respect we just refer here to a treatment 
of reduction in the case of non-free group actions [ 121 and the description of a general 
reduction procedure which also deals with singular values of the momentum map (see, e.g., 
[13, IS]). On the other hand, the framewok for the reduction theory has also been extended 
from symplectic manifolds to general Poisson manifolds [15, 161 and to cosymplectic and 
contact manifolds [ 171. (For the cosymplectic case, see also [18]). 

Suppose we are given a strongly Hamiltonian action of a compact Lie group G on 
a symplectic manifold ( M , o ) .  with Ad*-equivariant momentum map J .  The purpose of 
this paper now is, to establish a reduction scheme for M with respect to the normalized 
momentum map J = J / [ l J I l ,  where 11 11 is the norm induced by a G-invariant metric on 
q. It will be shown that the reduced spaces corresponding to the weakly regular values of 
J are Poisson manifolds or even, under the appropriate assumptions, canonical manifolds 
in the sense of Lichnerowicz [ 191. As pointed out before, the main motivation for this 
work stems from the study of the reduction of a class of non-Hamiltonian systems with 
symmetry. In particular, we are thinking here of the phase space description of certain 
types of mechanical systems'with friction which admit a compact symmetry group, and for 
which it tums out that the normalized momentum map j ,  rather than the momentum map 
itself, is a conserved quantity. 

In section 2 we first briefly review the general reduction procedure for Poisson manifolds 
as described in [ 1.51. This will then serve as the basic tool in deriving a reduction scheme for 
a symplectic manifold in terms of a normalized momentum map in section 3. In section 4 
we will briefly describe how this construction can be applied to establish a reduction of a 
particular class of non-Hamiltonian systems with a compact symmetry group, defined on a 
cotangent bundle (see also [5]). 

The treament is confined to finite&nensional smooth manifolds and Lie groups. All 
maps, vector fields and differential forms are assumed to be of class Cm. 

2. Poisson reduction 

Let (P, { , ) p )  be a Poisson manifold. We denote the corresponding Poisson tensor field on 
P by A, i.e. A is a skew-symmetric contravariant 2-tensor field with vanishing Schouten 
bracket, and such that for any two smooth functions f and g on P ,  A ( d f ,  d g )  = [f, g ) p  

(see, e.g., [9]). Let M c P be a submanifold of P with natural inclusion i : M + P. 
Assume we are given, at each point m E M, a linear subspace E, of T,P. We then consider 
the 'generalized' sub-bundle E of T P  Iy defined by E = U,&,. 

Suppose now that E satisfies the following conditions: 
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(i) E n  TM is an integrable sub-bundle of TM, inducing a foliation & on M. 
(ii) The foliation & is regular in the sense that the quotient space MI& is a smooth manifold 

and the projection n : M --f MI& is a submersion. 
(iii) If f. g smooth functions on P with differentials vanishing on E, then d(f, g ) p  also 

vanishes on E. 

Under these conditions one can prove that MI& admits a Poisson structure if and only 
if 

(iv) A(Eo) c E f T M  

where Eo is the annihilator of E and A is regarded as a vector bundle homomorphism from 
T'P to T P  (cf [IS]). Moreover, the Poisson bracket [ , ] M / E  on M/& is then defined by 
the relation 

If, g ~ p  0 i = If, ~ I M I E  on 

for any two (locally defined) smooth functions f. g on M/& and any two (locally defined) 
smooth extensions f,  I: of fox, jox, with differentials vanishing on E. Following Marsden 
and Ratiu [I51 we will call a triple ( P ,  M ,  E )  satisfying the conditions (i) to (iv) Poisson 
reducible. 

3. Normalized momentum maps and reduction 

Hereafter we assume that (M,o)  is a connected symplectic manifold, G a connected 
compact Lie group, and @ : G x M -+ M a strongly Hamiltonian (left) action of G 
on M, with Ad*-equivariant momentum map J : M + g*. Ad*-equivariance of J means 
that Ad; OJ = J o for every g E G where, as usual, Q8 = @(g, .). The G-orbit of a 
point m E M will be denoted by G.m and the isobopy subgroup of G at m by G,. For any 
c E G, the corresponding fundamental vector field (or infinitesimal generator) of the given 
action is the vector field on M, defined by 

d 
dl 

(For the definitions of tu and of the coadjoint action Ad*, we follow the conventions of [9]). 
In particular, the map -+ EM then yields a Lie algebra homomorphism from B into the 
Lie algebra X(M) of vector fields on M. If G, denotes the Lie algebra of G,, one can 
prove that (cf [20]) 

tub) = -@(ev( - r t ) .m) l ,~ .  

G m  = E E GIcu(m) = 0). 

Since @ is a Hamiltonian action with momentum map J we know that for any e E G 

itvo = -d@, J )  

with ( , ) denoting the natural pairing between G and B'. The real-valued h c t i o n  
.I$ = (4, J )  on M is a Hamiltonian for the (global) Hamiltonian vector field tu. We 
further recall the following basic properties of the momentum map [6, 7, 8, 91. At each 
point m E M the kernel (Ker) and image (Im) of the tangent map of J are given by 

Ker(T,J) = T,(G.m)' 
Im(T, J )  = @, 
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where 'I' denotes the w-orthogonal complement and is the annihilator of Pm in 8.. 
Moreover the momentum map J : M + 8' is a Poisson morphism with respect to the 
Poisson structure on M, induced by w,  and the canonical LiePoisson structure on g*. The 
fundamental vector fields of the action 0 on M and of the coadjoint action on 8" are 
J-related, i.e. 

(3) T J  o 6~ = tp o J 

for every 6 E 9. 
Since G is assumed to be compact, it is well known that its Lie algebra P, and likewise 

the dual space P', can be equipped with a G-invariant positive definite metric (see, e.g., 
[ZO]). Let us denote the metric on P* by ( , ) and G-invariance then means that for any 
two elements p, U E 8* and for every g E C 

(4) (Ad: p ,  Ad; U) = (p, U). 

(ad; h. U) + (p. ad; U) = 0 

This further implies that for every 6 E P 

and thus, in particular, for each U E 8' 

(ad; U. v )  = 0 (5) 

where ad' stands for the coadjoint representation of 8 on 9'. The metric induces a norm 
on G* according to llpll = (p,p) ' I2.  With respect to this norm we can then introduce the 
normalized momentum map 

where M\J-I(O) is the open submanifoldof M obtained by deleting the zero level set of J .  
For simplicity we henceforth put M\J-'(O) = MO. The restriction of w on MO will still be 
denoted by w and, clearly, (MO. w )  is a symplectic submanifold of (M, w ) .  Note that, since 
J - ' ( O )  is a G-invariant subset of M, the given action @ restricts to a strongly Hamiltonian 
action of C on (MO, o), which we also denote by 0, and its associated momentum map is 
the restriction of J on MO. 

Let Sp.  be the unit sphere in P', i.e. S p  = Ip E 8'1 Ilpll = 1). and consider the 
fibration 

U 
p : G*\ (01 -+ sp, U H p(u)  = -. 

llull 
Upon identifying the tangent space at a point U E C7 with g', one easily verifies that 

Ker(T,p) = (rul r E W) . (6) 

Since Sp is a regular submanifold of 8' and Im(j) c Sp , one can regard the normalized 
momentum map as a smooth map from MO into S p  and we then have 

.. 
J = p o J I M ~ .  (7) 

Hereafter j will be interpreted in this way. 

Lemma 1. Ker(Tmj) = (U E TmMol T,J(v) = rJ(m)  for some r E W). 
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Proof. Using the chain rule for tangent maps it foUows from (7) that T,j = TJ(,,P o T, J 
at each point m E MO. The lemma is then an immediate consequence of (6). U 

In view of (4) we have that 11 Ad: pll = 11p.11 from which we can infer, in particular, 
that the coadjoint action restricts to a smooth action of G on Sp which we also denote by 
Ad*. Taking into account the assumed Ad*-equivariance of J ,  it readily follows that 

(8 )  

for every g E G, i.e. .? is equivariant with respect to the induced actions of G on MO and 
Sp. Recall that G, denotes the isotropy subgroup of G at p E G" under the coadjoint 
action, and G, its Lie algebra. 

Lemma 2. For every p E h(j) c Sp, ?I(@) is an invariant subset for the action of G,. 
Moreover, at each point m E ?(p) the following relation holds: 

.f 0 Og = Ad:oj 

Ker(T,.f) n T,(G.~) = T,(G,.m). 

Proof. Invariance of .f-'(p) under G, immediately follows from the equivariance property 
(8) of .f. Now, let m E k ' ( p )  and v E T,(G.m). i.e. U = &,(m) for some 5 E G. For the 
second part of the lemma it then suffices to prove that U E Ker(T,j) if and only if 6 E G,. 

According to lemma 1, U E Ker(T,j) iff T,J(u) = ( T J  o t ~ " ) ( m )  = r J ( m )  for some 
r E W. Taking into account (3). this is still equivalent with 

b ( J ( m ) )  = r J ( m ) .  

Now we recall that cp = -ad$ (cf [9 ] )  and so we obtain from (5). with v = J ( m )  

rllJ(m)l12 = O  

Since m is a point in k ' ( p )  c M\J-'(O), we have that 11 J(m)ll # 0 and, therefore, r = 0. 
Summarizing, we have thus shown that eM,(m) E Ker(T,.f) if and only if e p ( J ( m ) )  = 0, 
i.e. E GJ,,,. Note that J(m)  = IIJ(m)llp. The proof of the lemma is then completed by 
observing that from the definition of the isotropy subalgebras and from the linearity of the 

0 

Assume now that p E Sp is a weakly regular value of 1, such that k, = j- '&) is 
a submanifold of MO and T,k, = Ker(T,j) at each point m E k,. From the previous 
lemma we can deduce that the given action @ restricts to an action of G, on k,,. Put 
E, = T,(G.m) and E = U , , ~ , * E ,  such that E c TM~lfi , .  With MO now possessing 
with the Poisson structure induced by the symplectic form U,  we can now state the following 
proposition, using the terminology of the previous section: 

Proposition. If G, acts freely on fi,, then the triple (MO, k,, E) is Poisson reducible. 

Proof. We have to check that (MO, k,, E) satisfies the conditions (i) to (iv) of section 2. 
(i) From lemma 2 we know that E n Ker(Tj) = E n Tk, is the sub-bundle of 

Tfi, with fibres E, n T,,k,-= T,(G,.m) = ( 5 ~ ~ ( m ) l c  E G,}. This clearly yields 
an integrable distribution on M, (since G, acts freely on kJ and the leaves of the 
corresponding foliation are the connected components of the G,-orbits. 

fundamental vector fields of the coadjoint action, it readily follows that GI(,,,> = G,. 
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(ii) G, is a compact Lie group, being a closed subgroup of the compact Lie group G, 
and therefore its action on &?, is proper. Since, by assumption, it is also a free action, the 
induced foliation on h, is regular (see, e.g., 171). The quotient space h,/G, therefore 
admits a smooth manifold structure such that the projection R, : fi, -+ fi,/G, becomes 
a submersion. 

(iii) Let f, g be any two smooth functions on MO with differentials vanishing on E, 
which is equivalent to saying that :M,,(f)(m) = (?Mo(g)(m) = 0 for every 6 E B and 
m E fi,. Since the fundamental vector fields are (global) Hamiltonian vector fields, it 
follows f" the Jacobi identity for Poisson brackets that e ~ , ( ( f , g ) ) ( m )  = 0 and, hence, 
d(f, g) vanishes on E. 

One easily 
verifies that Am(E:) = E,' = T,(G.m)' which, according to (I), yields &(E:) = 
Ker(T,J). In view of lemma 1 we furthermore have that Ker(T,J)CKerfT,j) and thus 
A,(E:)CKer(T,j) = T m 6 ,  at each point m E h,. Hence, it certainly holds that 

Putting Q, = &,/G,, we thus have that for every weakly regular value f i  of .f, and 
assuming G, acts freely on h?,, Q, is a Poisson manifold. Let i, : fi, --+ MO denote the 
natural inclusion, then the Poisson bracket { , ), on Q, is defined in terms of the Poisson 
bracket on MO by 

(iv) Let A denote the Poisson tensor field on MO, i.e. A = U- ' .  

A(Eo)cTI%?, + E, which completes the proof. 

tf. 51, 0 R, = If. 8) 0 i, 

where f, 5 are any two smooth functions on Q,, and f, g are smooth extensions to MO of 
for, and o rP, repectively, with d f I E  = dglB = 0. 

We now proceed to demonstrate that. under the appropriate regularity assumptions, the 
reduced space Q, in fact admits the structure of a canonical manifold. Recall that, following 
Lichnerowicz [I91 (see also, e.g., [21]). a canonical manifold is a triple ( P , {  , 1, r )  
consisting of a Poisson manifold ( P ,  [ , 1) of constant rank, and a fibration r : P 4 R 
such that the connected components of the fibres are the symplectic leaves of the Poisson 
structure. 

Hereafter, f i  E Sp always refers to a (weakly) regular value of .f with G, acting 
freely on the corresponding level set h,. We first of all note that J(&,)Cp-'(fi) = 
( k f i l k  E R;), with the set of strictly positive real numbers. Moreover, for any 
U E J(h?,), .!-'(u)ch,. From all this it follows that J l n i ,  can be regarded as a smooth 
map from M, into q. Henceforth, we assume that this is a regular map, which, in 
particular, implies that all level sets .!-'(U) for U E J ( 6 , )  are regular co-dimension 1 
submanifolds of h?,. Note also that for each U c k f i ,  with k#O, G. = G,. In view of the 
Ad'quivariance of J, it follows that the G,-orbit of a point m E h?, is entirely contained 
in the level set of J passing through m. From this one can then easily deduce that for each 
U E J(&,) ,  the corresponding hl'mden-Weinstein reduced space 'py = J - ' ( u ) / G ,  (cf the 
introduction) is a submanifold of Q,. and the canonical projection of J - ' ( u )  onto P, is 
simply the restriction of TC, to J- ' (u) .  

It is rather straightforward to verify that, under the given assumptions, the symplectic 
leaves of the Poisson structure on 8, are precisely the connected components of these 
Marsden-Weinstein reduced spaces. This indeed follows from the fact that the characteristic 
distribution of the Poisson structure on Q, is generated by the Hamiltonian vector fields on 
(Q,, ( , 1,) (see, e.g., 191). These Hamiltonian vector fields are x,-related to (the restriction 
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of) Hamiltonian vector fields on MO with a Ginvariant Hamiltonian, and the latter are known 
to be tangent to the level sets of the momentum map. From this one can then infer that 
at each point f i  E Q,, the characteristic space of the Poisson SVucNre coincides with 
the tangent space to the reduced Marsden-Weinstein manifold, say P", passing through 
fi. Moreover, it is not difficult to see that the the symplectic structure on P,, induced by 
the Poisson structure on Q,,, is the same as the one resulting from the Marsden-Weinstein 
construction. 

From the Marsden-Weinstein reduction theory we also know that dim Pv = dim M - 
dim G - dim G,. The previous discussion therefore tells us that the symplectic leaves 
of 42, all have the same dimension, namely dim M - dim G - dim G,; i.e. Q,, is a 
Poisson manifold of constant rank. A simple dimensional argument further reveals that 
dim Q, = (dim M -dim G -dim G,) + 1. 

By construction we have that 11111 is a G-invariant function on M, i.e. IlJll o Og = IlJll 
for each g E G. This in particular implies that IIJlllni, induces a well-defined smooth 
function r,, on Q,, such that 

r,, on,, = IIJlllli,. (9) 

Clearly, IIJlll,,j,, ,can be identified with J l i ,  (regarded as a map into I$+) and therefore, 
by assumption, it is a regular map. This can also be checked directly as follows. Let 
m E fi, and U E T,,h,,. According to lemma 1, T,J(v) = rJ(m)  for some r E R. 
Choosing an orthonormal basis (e') of g* with respect to the given Euclidean metric on 
9'. we can put J = J;e'. with Ji E Cm(M), and then IlJll = (Ei J;*)'P. A simple 
computation then shows us that d(llJlllGJm)(u) = rllJ(m)ll. Observing that IIJ(m)ll#O 
form E h,, and r#O whenever U is not tangent to J-'(J(m)), we see that IIJlllni, has no 
singular points. Since n, is a submersion it then follows from (9) that r,, is a regular map, 
i.e. dr,(fi)#O for all #I E €2,. Moreover, for each k E Im(r,,)cI$+ we readily find that 
r;'(k) = J - ' ( v ) / G ,  = Pv, with U = k&. This finally completes the p m f  that the triple 
(Q,,, ( , 1,. 5,) is indeed a canonical manifold. 

Summarizing the above analysis, we have thus demonstrated that the following theorem 
holds. 

Theorem 1. Let G be a compact connected Lie group defining a strongly Hamiltonian 
action on aconnected symplectic manifold ( M ,  U) ,  with Ad*-equivariant momentum map J .  
Let p E sp be a weakly regular value of the normalized momentum map J = J / ~ I J I I  (with 
respect to a Ginvariant metric on G*). Assume that G, acts freely on M, = .f-'(p) and 
that Jl,,j,, is a regular map. Then, the quotient space Q, = . f- '(p)/G, admits the structure 
of a canonical manifold, the symplectic leaves of which are the connected cotnponents of 
the Marsden-Weinstein reduced spaces corresponding to the values of J in J ( M , ) .  0 

Note that the regularity conditions of the theorem are in particular verified when the 
given action of G on M is a free action, for then both J and .f are submersive (as can be 
inferred from (2) and (7)). 

4. Application 

In this section we briefly indicate how the above geometrical reduction scheme can be 
applied to a specific class of non-Hamiltonian systems with symmetry, defined on a 
cotangent bundle. For more details and additional comments we refer the reader to [SI. 
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Let Q be a smooth, finite-dimensional manifold, and T*Q its cotangent bundle with 
canonical symplectic form DQ = d0p, where 0p is the Liouville I-form. In canonical 
coordinates (4', p i )  we have BQ = pi@'. Suppose again that C is a compact, connected 
Lie group and let @ : G x T * Q - + T * Q  denote the cotangent l i i  of a smooth left action of 
G on Q .  For simplicity we assume that this action, and therefore also its cotangent lit? 0, 
is free. It is well known (see, e.g., [9 ] )  that 0 is a strongly Hamiltonian action which, in 
particular, leaves the Liouville I-form invariant, i.e. for each gsG 

@:6Q = 6 Q .  (10) 

it7.,Dp = -dJt (11) 

Fulthermore, the fundamental vector fields of the action @ satisfy 

with Jc = (&-Q, 0 ~ ) .  
On T'Q we now consider a dynamical system X determined by 

i x W p  = -dH - feQ (12) 

for some smooth functions H, f e C m ( T * Q ) .  In canonical coordinates the differential 
equations corresponding to X read 

The phase space equations of motion of certain mechanical systems with friction can be 
cast into such a form (cf some models for the Kepler problem with drag [I, 2.41). Suppose 
the given action Q leaves H invariant, then a straightforward calculation, using (I  I) and 
(12), reveals that for each e&, X ( J t )  = - f Jt and, hence 

X ( J )  = - f J .  

From this one can first of all deduce that J - ' ( O )  is an invariant submanifold of X .  .Putting 
T'Q,, = T'Q\J-'(O) it also follows that the normalized momentum map J is a conserved 
quantity of XIT.Q,, i.e. XIT.Qo(.f)  = 0 [5].  All the regular level sets of j are therefore 
invariant submanifolds of the given dynamical system. If we now furthermore assume 
that also the 'friction coefficient' f is C-invariant, then. taking into account (IO) and 
the invariance of H, one easily finds that @ is a symmetry of X. The flow of Xl,-r,,,) 
then commutes with the induced action of G on J - ' ( O )  and, similarily, for each @g., 
the Row of XI j - , (@,  commutes with the action of G, induced on j - ' @ ) .  Consequently, 
the restrictions of X to the invariant submanifolds J - ' ( O )  and .f-l(p) project onto the 
corresponding quotient spaces PO = J-'(O)/C and Q, = .f-'(p)/G@, respectively. 
(Recall that we have assumed the given action of the compact Lie group G to be free). 
Combining all this with the results of the previous section, we can finally state the following 
reduction theorem for the dynamical system X defined by (12) (cf 151 for details of the 
proof): 

Theorem 2.  If both H and f are invariant under the free lifted action @ of the compact, 
connected Lie group G on T'Q, then Q, is a symmetry of X. and it holds that the zero 
level set of the momentum map J and the level sets of the normalized momentum map 
J are invariant submanifolds of X. Furthermore, we have that (i) the restriction of X to 
J - ' ( O )  projects onto the reduced symplectic manifold PO, (ii) the restriction of X to .f-'(p) 

U projects onto the reduced canonical manifold Qp. 
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It is well known that, under the given assumptions, the Mmden-Weinstein reduced 
space ('PO, WO) is symplectomorphic with ( T * ( Q / G ) .  W Q / c ) ,  where Q/C is the orbit space 
of the action of G on Q [7]. Upon identifying both symplectic manifolds, it is then easily 
seen that the restriction of X to J- ' (O)  projects onto the vector field Xo satisfying the 
equation 

ix,Op/c = -dHo - f&/c 

with HO and fo the functions on T * ( Q / G )  induced by H and f, respectively, and #Q/C 

the canonical Liouville I-form on T'(Q/G) .  
We now describe in some more detail the reduction of the restriction of X to an invariant 

submanifold J*-'(p). From (12) we infer that X can be written as 

X = -I\Q(d!f) - f A (13) 

with AQ = wp' the (canonical) Poisson tensor field on T'Q and A = A Q ( ~ Q )  the dilation 
vector field (i. e. A = p;a/api) .  Using the relation iawp = #Q it immediately follows that 
A is invariant under the lifted group action of G on T*Q and, moreover, that 

A(J) = J (14) 

(the components of the momentum map of a lifted group action are homogeneous of the 
first degree in the canonical momenta pi). Consequently, following the same reasoning as 
given above for X, it is seen that J is a conserved quantity for A and that Alj.,lp, projects 
onto Q#. Let us denote this projection by A,,. Denoting by A, the induced Poisson tensor 
field on Q,, it now easily follows from (13) and from the above analysis, that X [ j - l , p )  
projects onto the vector field 

2, = -A,(dfi,) - f,&, 
where fi, and f,, are determined by HIptl,,) = fi,ozp and f lj.tl,) = f,oz,, respectively. 
The reduced system thus consists of a 'Hamiltonian part', -A,(dfi,), describing the 
evolution along the symplectic leaves of e,, and a 'dissipative part', -f,&,, which 
describes the motion transverse to the symplectic leaves. Note that (14) in particular implies 
that A([! J l l )  = IlJll from which one immediately deduces that &(r,,) = r,,, with r, defined 
by (9). Hence, i,, admits a component transverse to the symplectic foliation of Q, which, 
at least ~ o c a ~ ~ y ,  can tx. written as -fpr,a/ar,. 
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